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We analyze the one-dimensional Kondo necklace model, at zero temperature, with an anisotropy parameter
� in the interaction of the conduction chain, by means of the density matrix renormalization group. We
calculate the energy gap and estimate the quantum critical points that separate a Kondo singlet state from an
antiferromagnetic state, assuming a Kosterlitz-Thouless tendency. We also observe the correlation functions
and the structure factors that support our critical points. The resulting phase diagram is presented and compared
to that reported previously using Lanczos calculations. It is shown that the quantum critical points vary very
slowly with �, but when � approaches zero, they drop abruptly.
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I. INTRODUCTION

The magnetic properties of heavy fermion materials, such
as their quantum phase transition between an antiferromag-
netic ordered state and a nonmagnetic spin liquid �Kondo
singlet� state, have been analyzed theoretically and experi-
mentally using many methods.1–3 These systems �intermetal-
lic compounds containing rare-earth or actinide elements,
such as Ce, Yb, and U� possess two types of electrons: the
conduction electrons �in s, p, and d orbitals�, which propa-
gate through the lattice of the system, and the localized ones,
which stay in the f orbitals for low energies. The coupling
between these electrons generates two distinct effects: the
Kondo effect and the Ruderman-Kittel-Kasuya-Yosida
�RKKY� interaction. The first consists of a screening of the
localized magnetic moments by the conduction electrons,
due to the formation of singlets, and favors the spin liquid
phase. The second, which is an indirect exchange between
the localized spins mediated by the conduction electrons,
tends to establish the antiferromagnetic order. The interplay
between these mechanisms determines the magnetic phase of
the system.

In order to investigate heavy fermions and the properties
described above, some theoretical models, like Anderson’s
and the Kondo lattice, have been exhaustively studied. These
models contain charge and spin degrees of freedom, so their
treatment is rather complicated. But it has been determined
that the magnetic behavior mentioned above is driven by the
spin degrees of freedom, not by the charge ones. In order to
focus on the magnetic properties of the system, Doniach4

introduced a simpler model that ignores charge fluctuations,
and that maintains the interplay between the RKKY interac-
tion and the Kondo effect. This model is called the Kondo
necklace, and is characterized by the following Hamiltonian:

HKN = t�
i=1

N

�si
xsi+1

x + si
ysi+1

y � + J�
i=1

N

S� i · s�i, �1�

where s�i and S� i represent the spins of the conduction and
localized electrons at site i, respectively, t is the hopping
parameter, and J is the Kondo exchange coupling. The first
term �XY interaction in the conduction chain� attempts to

emulate the hopping of conduction electrons to their nearest
neighbors, and the second term is the interaction between
localized and conduction spins. The behavior of the system is
determined by the ratio of both coupling parameters, J / t. The
quantum critical point �J / t�c separates an antiferromagnetic
phase �for J / t� �J / t�c� from the spin liquid phase �for J / t
� �J / t�c�. Materials such as CeRh2Si2−xGex,

5

CeIn�Ag1−xCux�2,6 and Ce1−xLaxAl3 �Ref. 7� seem to behave
according to this model, modifying the value of J either by
varying x or by applying external pressure.

The one-dimensional Kondo necklace model at zero tem-
perature has been studied using several methods. First,
Doniach4 obtained �J / t�c=1 using mean field theory. Later,
Santini and Sólyom8 used finite size scaling and obtained
�J / t�c=0.24. They also proposed that the phase transition
was of Kosterlitz-Thouless type. Nevertheless, most ap-
proaches, such as quantum Monte Carlo simulations,9

bosonization,10,11 density matrix renormalization
group,10,12,13 bond-operator mean field theory,14,15 and flow
equation method16 support the idea that no phase transition at
finite couplings occurs �that is, the system is always in the
spin liquid phase, �J / t�c=0�. A Kosterlitz-Thouless tendency
has also been suggested for this case.10,13

According to the latter results, the physical behavior of
the system is as follows: for J / t�1, the coupling between
neighboring sites is very small, and the ground state is made
up of nearly independent spin singlets in each site. As J / t
diminishes, the nearest neighbor interaction gets stronger and
the Kondo effect loses importance. For J / t�1, the RKKY
exchange becomes the dominant interaction in the system,
and the antiferromagnetic phase tends to be established,
without success for finite coupling parameters, with a
Kosterlitz-Thouless tendency.

In order to study the effect of anisotropy, Saguia et al.17

introduced an anisotropic Kondo necklace model, which will
be considered using the following Hamiltonian:

HAKN = t�
i=1

N

�si
zsi+1

z + �1 − ��si
ysi+1

y � + J�
i=1

N

�S� i · si�� . �2�

This model takes into account an Ising-like anisotropy
parameter � in the interaction of conduction spins. This pa-
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rameter takes values from �=0 �original Kondo necklace� to
�=1 �full anisotropic case�. Different results for the quantum
critical behavior of this model �in one dimension, at zero
temperature� have been obtained: using a real-space renor-
malization group17 it was determined that for ��0.58, there
was a phase transition at a finite J / t, and that for ��0.58,
the system was in the Kondo singlet phase for all nonzero
values of J / t. Using spin wave theory and a numerical Lanc-
zos method for systems up to 24 sites,18 it was seen that there
was always a phase transition for ��0, and with the bond-
operator method,19 no transition at finite J / t for any aniso-
tropy was found.

In this paper, we study the one-dimensional anisotropic
Kondo necklace model �2� at zero temperature, using
White’s density matrix renormalization group �DMRG�
method.20–22 In Sec. II, we calculate the energy gap for sev-
eral � values, and estimate the critical points Jc considering
a Kosterlitz-Thouless tendency, and t=1 for simplicity. In
Sec. III, we support our results with the correlation functions
and structure factors. In Sec. IV we show the resulting phase
diagram, and compare it to that of Mahmoudian and
Langari.18 The conclusions are presented in Sec. V.

II. ENERGY GAP STUDY

In order to analyze the anisotropic Kondo necklace
Hamiltonian �2�, we have implemented a finite system
DMRG with open boundary conditions. Since, in general, the
Hamiltonian �2� does not commute with the total spin in z
direction, the algorithm was constructed without symmetries.
In this case, we took the gap � as the energy difference
between the ground state and the first excited state. To im-
prove our calculation, both states were taken as targets. For a
specific case, namely, �=1.0 and J=0.7, we have calculated
the gap for different sizes of the chain N, from N=10 to N
=300. These results are shown in Fig. 1. We also used the
extrapolation method of Vanden Broeck-Schwartz23 to esti-
mate the value of the gap at the thermodynamic limit �N
→��, obtaining �=0.20000152. We observe that for N
�100, the gap varies very slowly, and that its corresponding
value in the thermodynamic limit is close to that of 100 sites
�difference of 0.4%�, so to obtain values of the gap close to
those of very large chains without a huge computational ef-

fort, we took N=100; because of the latter, we do not obtain
the critical points with absolute certainty, but a close estimate
to those when N→� is showed. As the anisotropy parameter
� and the Kondo coupling J diminish, that is, as we get
closer to the original Kondo necklace model and the RKKY
interactions become stronger, more states are needed to pre-
serve the order of the error; so in our code, we maintained
m=20 states for high values of J and �, and m=115 for low
values. Our highest errors were on the order of 10−7.

In Fig. 2, the gaps for �=0.6 and �=0.05 as functions of
J are presented; the solid lines are guides for the eye. They
clearly fall to zero at finite values of J, which correspond to
the quantum critical points Jc.

In order to estimate Jc for the different anisotropies �, we
fitted the gap to the following exponential form, which cor-
responds to a Kosterlitz-Thouless transition:24

� = A exp�− b/�J − Jc�0.5� . �3�

We could consider the exponent s of �J−Jc� as a variable, but
it turned out to be very close to 1

2 , which is the expected case
for a Kosterlitz-Thouless transition �for example, s=0.46 for
�=1.0 and s=0.50 for �=0.2�. In Fig. 3, we show the loga-
rithmic tendency of the gap at �=0.6 near Jc=0.4564�7�,
which is linear with 1 /�J−Jc for points with small errors.
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FIG. 1. Energy gap � for J=0.7, �=1.0, and different sizes of
the chain. The solid line is a guide for the eye.
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FIG. 2. Energy gap � as a function of J. For �=0.05. and �
=0.6. The solid lines are guides for the eye.
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FIG. 3. Logarithmic tendency of the gap near Jc for �=0.6.
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This indicates that a Kosterlitz-Thouless decay corresponds
well to the closing of the gap.

In Table I, we show the resultant critical values Jc for
each � considered. We obtained very good fits �that is, we
obtained regression correlation factors larger than 0.99994�.
We also were able to calculate Jc introducing some changes
in the function �3�. For example, we add prefactors to the
exponential such as Jd, with d a constant, and fix b to some
value �we take b=1, since the obtained b values in the fit-
tings with Eq. �3� are close to 1�. In this case, the regression
correlation factors are of the same order and, for ��0.1, the
critical points don’t change significantly. But for very small
anisotropies, they are considerably larger: for example, for
�=0.01, the critical point would be Jc�=0.318. This shows
the difficulty of accurately establishing the critical points, but
in any case, as we shall see in Sec. IV, the phase diagram
keeps its main features if we choose the latter critical points
instead of those reported in Table I.

Implementing a DMRG algorithm with symmetries for
�=1.0 �full anisotropic model� and �=0 �original Kondo
necklace�, we found that for the former case, the gap � de-
fined above is not a spin gap, whereas for the latter case it is,
between sectors of total spin 0 and 1.

III. CORRELATION FUNCTIONS AND
STRUCTURE FACTORS

We will now report our results for the correlation func-
tions �s0

zsi
z�, �s0

+si
−�, �S0

zSi
z�, and �S0

+Si
−�, with respect to the

ground state of the superblock. Here, s0�S0� denotes a con-
duction �localized� spin in the middle of the chain, and si�Si�
another conduction �localized� one separated from the former
i sites. We have calculated the correlation functions for �
=1.0 and �=0.2 in systems of 60 sites, taking values of J
around the critical points we obtained before. We also calcu-
lated the local correlation functions �S� ·s�� for each site, which
on average tend to − 3

4 at large J values �as well as for
�=0�.13 For example, we obtained �S� ·s��=−0.7487 for J
=5.0 and �=1.0. This was expected, since for large J the
anisotropy � loses importance, the Kondo effect dominates
the system and nearly independent singlets are established in
each site.

In Fig. 4, we present our results for the z correlation func-
tions of conduction spins �s0

zsi
z� for �=1.0, and in Fig. 5, we

show their absolute values. For J=0.6 and J=0.5�J�Jc�, we
found RKKY antiferromagnetic oscillations that decay rap-
idly as the separation i between spins increases. As J takes
larger values, the oscillations decrease faster. This is ex-
pected, since the Kondo effect becomes stronger as J in-
creases. This behavior is similar to that of the in-plane cor-
relation functions found by Moukouri et al. for the original
Kondo necklace model.13 Also, for both J values, without

taking into account the sites near the end of the chain, the
decrease in the functions in Fig. 5 fits very well with an
exponential decay. Otherwise, for J=0.2 and J=0.4, we
don’t perceive a decrease in the correlation functions at a
glance �except for the last sites, which could be caused by
finite size effects�. But looking carefully at the obtained val-
ues, we can see that, in fact, the functions are always de-
creasing, although very slowly and not exponentially. This
indicates a quasi-long-range antiferromagnetic order �in
agreement with the Mermin-Wagner theorem�. So, the con-
duction z-correlation functions are consistent with the re-
ported critical point. This is also true for localized correlation
functions �S0

zSi
z�, which are equal to the conduction ones for

every J that we considered. The planar correlation functions
�s0

+si
−� and �S0

+Si
−� are zero, even for nearest neighbors, indi-

cating no correlations in x and y directions.
In Fig. 6, the z structure factor is presented, which, for a

wave vector q, is given by

sz�q� =
1

N
�
j,l=1

N

�sj
zsl

z�eiq�j−l�, �4�

with N=60 �the size if the chain� and

q =
2	

N
m, m = 0, . . . ,

N

2
. �5�

For an antiferromagnetic order, it is expected that sz�q�
diverges at q=	 when N→�, so looking at the structure
factor, we can obtain information about where this phase is
present. The pronounced peak of sz�	� for J=0.4 and J
=0.2 clearly indicates the existence of an antiferromagnetic
phase there, while for the other J values, this can not be
established. This is consistent with the critical point Jc found
with the gap.
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FIG. 4. z correlation functions of conduction spins �s0
zsi

z� for �
=1.0; s0

z corresponds to a conduction spin in the middle of the
chain.

TABLE I. Critical points Jc obtained with a Kostelitz-Thouless decay for the gap.

� 1.0 0.8 0.6 0.4 0.2 0.1 0.05 0.01

Jc 0.4691�7� 0.4668�7� 0.4564�7� 0.439�1� 0.407�1� 0.381�1� 0.3544�9� 0.293�2�
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In Fig. 7, the expected values for both spins ��sz� and �Sz��
are shown for �=1.0 and J=0.2�Jc, so we can see the an-
tiferromagnetic configuration explicitly. As for the correla-
tion functions, the absolute values for both types of spins are
equal in magnitude.

For �=0.2, the z correlation functions and the corre-
sponding structure factors show a behavior similar to those
in the case for �=1.0, so they are not shown. These results
are also in agreement with the critical point obtained with the
gap: the z correlation function for J=0.5 decreases exponen-
tially, and for J=0.3, decreases very slowly up to the sites
near the end of the chain. Also, the structure factor sz�q�
presents a pronounced peak at q=	 for J=0.3 indicating
antiferromagnetism, while for J=0.5 this does not happen.
So Jc seems to be between those values of J, as we found
earlier. This time, the correlation functions are appreciably
different for both types of spins, the magnitude for the con-
duction spins being smaller than the magnitude for the local-
ized ones �Fig. 8 for J=0.3�. Nevertheless, they have the
same form, and give the same information about where the
critical point could be. The expected values for conduction
spins are also smaller than the ones for localized spins, but
have the same configuration that is shown in Fig. 7. As J
takes larger values, the difference between both types of
spins diminishes, since the interaction in the conduction
chain becomes less important. It is worthwhile to mention
that neither for localized nor for conduction spins are the
planar correlation functions different from zero for �=0.2, as
can be seen in Fig. 9. Nevertheless, they do not give us any

information about the quantum phase transition, since they
are very similar for J=0.3 and J=0.5. They tend very
quickly to zero, and we can’t even distinguish if the decay is
exponential or a power law �both behaviors fit very well�.
The planar structure factors, defined by

s+−�q� =
1

N
�
j,l=1

N
1

2
��sj

+sl
−� + �sl

+sj
−��eiq�j−l� �6�

and shown in Fig. 10, do not provide information about the
transition either. They are very similar for both J values and
do not present a sharp maximum at q=	. So, according to
our results, the planar correlations do not allow us to identify
a range in which the quantum phase transition could take
place.

It is known that for systems undergoing a Kosterlitz-
Thouless transition, besides the gap tendency of the form �3�,
the correlation functions g�r� decay exponentially with the
distance r above the critical point, and when the phase tran-
sition takes place, the decay changes to a power law of the
form

g�r� 	 r−
, �7�

where 
=0.25 at the critical point.24 As already stated, the z
correlation functions obtained fit very well with an exponen-
tial decay above Jc. For �=1.0, we have tried to establish if
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FIG. 5. 
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 for �=1.0.
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FIG. 6. z structure factor of conduction spins for �=1.0.
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FIG. 7. Comparison between z expected values of conduction
and localized spins, for J=0.2 and �=1.0.
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FIG. 8. Comparison between z correlation functions of conduc-
tion and localized spins, for J=0.3 and �=0.2.
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a behavior of the form �7� corresponds to the z correlation
functions near the critical point found with the gap �exclud-
ing sites near the end of the chain�. We obtained a value of

=0.224 at J=0.49, somewhat close to the critical point. The
finite size of the lattice considerably affects the behavior of
the correlation functions �see Fig. 5�, and also could be im-
portant for the gap values. So, in order to determine beyond
doubt if the correlation function decays with 
=0.25 at the
critical point and if the transition corresponds to a Kosterlitz-
Thouless one, finite size effects should be reduced even
more.

IV. PHASE DIAGRAM

In Fig. 11, we show the resulting phase diagram, which
we constructed using the values in Table I. Below the line,
the system is in the antiferromagnetic state, and above it, it is
in the spin liquid phase. Qualitatively, this diagram is similar
to that of Mahmoudian and Langari,18 since we found a
phase transition even for very small anisotropies �for ex-
ample, Jc=0.293�2� for �=0.01�, but their critical points are
rather different from ours.

First, our Jc are larger for all anisotropies. Furthermore,
for high � values, the critical line in Fig. 11 increases with �
a little more slowly than the one obtained by Mahmoudian
and Langari. For 0.01���0.1, the increase we obtained is
less abrupt than theirs, and for ��0.01 the rise is extremely

sharp, since Jc=0 at �=0. Anyway, our results suggest that a
quantum phase transition between antiferromagnetic and
spin liquid states takes place at a finite critical point Jc for
any ��0. As we said before, if we consider the prefactor Jd

in the gap decay �3�, the critical points change significantly
for very small anisotropies, making the rise for lower � even
sharper than before �since these values of Jc are larger than
those of Table I�. Nevertheless, the phase diagram still indi-
cates that for any ��0 a phase transition occurs at finite
coupling parameters, and that the increase in the critical line
for ��0.01 is slower than the one Mahmoudian and Langari
obtained.

V. CONCLUSIONS

Using the DMRG method, we have studied the one-
dimensional anisotropic Kondo necklace model at T=0 for a
long chain. Calculating the energy gap � as function of the
Kondo coupling J for different anisotropies �, we have esti-
mated the critical points Jc in which a quantum phase tran-
sition between quasi-long-range antiferromagnetic and spin
liquid phases takes place. To do that, we assumed a
Kostelitz-Thouless tendency for the vanishing of the gap.
The results of the z correlation functions and the structure
factors are consistent with the determined critical points. The
gap and the correlation functions present features similar to
what is expected in a Kosterlitz-Thouless transition. Our
phase diagram is quantitatively different from that obtained
by Mahmoudian and Langari for smaller systems,18 the
former showing a more abrupt tendency for small anisotro-
pies and a slower variation for larger ones. Nevertheless, our
diagram supports the idea that there is a quantum phase tran-
sition at a finite J for any ��0.
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